graphvite.optimizer¶
Optimizer module of GraphVite
-
class
graphvite.optimizer.
Optimizer
(type=auto, *args, **kwargs)[source]¶ Create an optimizer instance of any type.
- Parameters
type (str or auto) – optimizer type, can be ‘SGD’, ‘Momentum’, ‘AdaGrad’, ‘RMSprop’ or ‘Adam’
-
class
graphvite.optimizer.
LRSchedule
(*args, **kwargs)¶ Learning Rate Schedule.
This class has 2 constructors
-
LRSchedule
(schedule='constant')¶
-
LRSchedule
(schedule_function)
- Parameters
schedule (str, optional) – ‘constant’ or ‘linear’
schedule_function (callable) – function that returns a multiplicative factor, given batch id and total number of batches
-
-
class
graphvite.optimizer.
SGD
(lr=1e-4, weight_decay=0, schedule='linear')¶ Stochastic gradient descent optimizer.
- Parameters
lr (float, optional) – initial learning rate
weight_decay (float, optional) – weight decay (L2 regularization)
schedule (str or callable, optional) – learning rate schedule
-
class
graphvite.optimizer.
Momentum
(lr=1e-4, weight_decay=0, momentum=0.999, schedule='linear')¶ Momentum optimizer.
- Parameters
lr (float, optional) – initial learning rate
weight_decay (float, optional) – weight decay (L2 regularization)
momentum (float, optional) – momentum coefficient
schedule (str or callable, optional) – learning rate schedule
-
class
graphvite.optimizer.
AdaGrad
(lr=1e-4, weight_decay=0, epsilon=1e-10, schedule='linear')¶ AdaGrad optimizer.
- Parameters
lr (float, optional) – initial learning rate
weight_decay (float, optional) – weight decay (L2 regularization)
epsilon (float, optional) – smooth term for numerical stability
schedule (str or callable, optional) – learning rate schedule
-
class
graphvite.optimizer.
RMSprop
(lr=1e-4, weight_decay=0, alpha=0.999, epsilon=1e-8, schedule='linear')¶ RMSprop optimizer.
- Parameters
lr (float, optional) – initial learning rate
weight_decay (float, optional) – weight decay (L2 regularization)
alpha (float, optional) – coefficient for moving average of squared gradient
epsilon (float, optional) – smooth term for numerical stability
schedule (str or callable, optional) – learning rate schedule
-
class
graphvite.optimizer.
Adam
(lr=1e-4, weight_decay=0, beta1=0.999, beta2=0.99999, epsilon=1e-8, schedule='linear')¶ Adam optimizer.
- Parameters
lr (float, optional) – initial learning rate
weight_decay (float, optional) – weight decay (L2 regularization)
beta1 (float, optional) – coefficient for moving average of gradient
beta2 (float, optional) – coefficient for moving average of squared gradient
epsilon (float, optional) – smooth term for numerical stability
schedule (str or callable, optional) – learning rate schedule